23,901 research outputs found

    Some Observations for Mean-Field Spin Glass Models

    Full text link
    We obtain bounds to show that the pressure of a two-body, mean-field spin glass is a Lipschitz function of the underlying distribution of the random coupling constants, with respect to a particular semi-norm. This allows us to re-derive a result of Carmona and Hu, on the universality of the SK model, by a different proof, and to generalize this result to the Viana-Bray model. We also prove another bound, suitable when the coupling constants are not independent, which is what is necessary if one wants to consider ``canonical'' instead of ``grand canonical'' versions of the SK and Viana-Bray models. Finally, we review Viana-Bray type models, using the language of L\'evy processes, which is natural in this context.Comment: 15 pages, minor revision

    Identification of the novel localization of tenascinX in the monkey choroid plexus and comparison with the mouse

    Get PDF
    Tenascin-X (Tn-X) belongs to the tenascin family of glycoproteins and has been reported to be significantly associated with schizophrenia in a single nucleotide polymorphism analysis in humans. This finding indicates an important role of Tn-X in the central nervous system (CNS). However, details of Tn-X localization are not clear in the primate CNS. Using immunohistochemical techniques, we found novel localizations of Tn-X in the interstitial connective tissue and around blood vessels in the choroid plexus (CP) in macaque monkeys. To verify the reliability of Tn-X localization, we compared the Tn-X localization with the tenascin-C (Tn-C) localization in corresponding regions using neighbouring sections. Localization of Tn-C was not observed in CP. This result indicated consistently restricted localization of Tn-X in CP. Comparative investigations using mouse tissues showed equivalent results. Our observations provide possible insight into specific roles of Tn-X in CP for mammalian CNS function

    Anisotropic magnetic fluctuations in the ferromagnetic superconductor UCoGe studied by angle-resolved ^{59}Co NMR

    Get PDF
    We have carried out direction-dependent ^{59}Co NMR experiments on a single crystal sample of the ferromagnetic superconductor UCoGe in order to study the magnetic properties in the normal state. The Knight shift and nuclear spin-lattice relaxation rate measurements provide microscopic evidence that both static and dynamic susceptibilities are ferromagnetic with strong Ising anisotropy. We discuss that superconductivity induced by these magnetic fluctuations prefers spin-triplet pairing state.Comment: 4 pages, 4 figure

    The Universe out of an Elementary Particle?

    Get PDF
    We consider a model of an elementary particle as a 2 + 1 dimensional brane evolving in a 3 + 1 dimensional space. Introducing gauge fields that live in the brane as well as normal surface tension can lead to a stable "elementary particle" configuration. Considering the possibility of non vanishing vacuum energy inside the bubble leads, when gravitational effects are considered, to the possibility of a quantum decay of such "elementary particle" into an infinite universe. Some remarkable features of the quantum mechanics of this process are discussed, in particular the relation between possible boundary conditions and the question of instability towards Universe formation is analyzed

    Robust strongly-modulated transmission of a TT-shaped structure with local Rashba interaction

    Full text link
    We propose a scheme of spin transistor using a TT-shaped structure with local Rashba interaction. A wide antiresonance energy gap appears due to the interplay of two types of interference, the Fano-Rashba interference and the structure interference. A large current from the gap area can be obtained via changing the Rashba strength and/or the length of the sidearm by using gate voltage. The robustness of the antiresonance gap against strong disorder is demonstrated and shows the feasibility of this structure for the real application.Comment: 4 pages, 3 figures, To be published in PR

    Complete homochirality induced by the nonlinear autocatalysis and recycling

    Full text link
    A nonlinear autocatalysis of a chiral substance is shown to achieve homochirality in a closed system, if the back-reaction is included. Asymmetry in the concentration of two enantiomers or the enantiometric excess increases due to the nonlinear autocatalysis. Furthermore, when the back-reaction is taken into account, the reactant supplied by the decomposition of the enantiomers is recycled to produce more and more the dominant one, and eventually the homochirality is established.Comment: 4 pages, 2 figure

    Nonadiabatic generation of coherent phonons

    Get PDF
    The time-dependent density functional theory (TDDFT) is the leading computationally feasible theory to treat excitations by strong electromagnetic fields. Here the theory is applied to coherent optical phonon generation produced by intense laser pulses. We examine the process in the crystalline semimetal antimony (Sb), where nonadiabatic coupling is very important. This material is of particular interest because it exhibits strong phonon coupling and optical phonons of different symmetries can be observed. The TDDFT is able to account for a number of qualitative features of the observed coherent phonons, despite its unsatisfactory performance on reproducing the observed dielectric functions of Sb. A simple dielectric model for nonadiabatic coherent phonon generation is also examined and compared with the TDDFT calculations.Comment: 19 pages, 11 figures. This is prepared for a special issue of Journal of Chemical Physics on the topic of nonadiabatic processe
    • 

    corecore